How does plant cell wall nanoscale architecture correlate with enzymatic digestibility?

نویسندگان

  • Shi-You Ding
  • Yu-San Liu
  • Yining Zeng
  • Michael E Himmel
  • John O Baker
  • Edward A Bayer
چکیده

Greater understanding of the mechanisms contributing to chemical and enzymatic solubilization of plant cell walls is critical for enabling cost-effective industrial conversion of cellulosic biomass to biofuels. Here, we report the use of correlative imaging in real time to assess the impact of pretreatment, as well as the resulting nanometer-scale changes in cell wall structure, upon subsequent digestion by two commercially relevant cellulase systems. We demonstrate that the small, noncomplexed fungal cellulases deconstruct cell walls using mechanisms that differ considerably from those of the larger, multienzyme complexes (cellulosomes). Furthermore, high-resolution measurement of the microfibrillar architecture of cell walls suggests that digestion is primarily facilitated by enabling enzyme access to the hydrophobic cellulose face. The data support the conclusion that ideal pretreatments should maximize lignin removal and minimize polysaccharide modification, thereby retaining the essentially native microfibrillar structure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Minor Wall-Networks between Monolignols and Interlinked-Phenolics Predominantly Affect Biomass Enzymatic Digestibility in Miscanthus

Plant lignin is one of the major wall components that greatly contribute to biomass recalcitrance for biofuel production. In this study, total 79 representative Miscanthus germplasms were determined with wide biomass digestibility and diverse monolignol composition. Integrative analyses indicated that three major monolignols (S, G, H) and S/G ratio could account for lignin negative influence on...

متن کامل

Lignin Depletion Enhances the Digestibility of Cellulose in Cultured Xylem Cells

Plant lignocellulose constitutes an abundant and sustainable source of polysaccharides that can be converted into biofuels. However, the enzymatic digestion of native plant cell walls is inefficient, presenting a considerable barrier to cost-effective biofuel production. In addition to the insolubility of cellulose and hemicellulose, the tight association of lignin with these polysaccharides in...

متن کامل

Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment

BACKGROUND Lignin is embedded in the plant cell wall matrix, and impedes the enzymatic saccharification of lignocellulosic feedstocks. To investigate whether enzymatic digestibility of cell wall materials can be improved by altering the relative abundance of the two major lignin monomers, guaiacyl (G) and syringyl (S) subunits, we compared the degradability of cell wall material from wild-type ...

متن کامل

Modifying crops to increase cell wall digestibility.

Improving digestibility of roughage cell walls will improve ruminant animal performance and reduce loss of nutrients to the environment. The main digestibility impediment for dicotyledonous plants is highly lignified secondary cell walls, notably in stem secondary xylem, which become almost non-digestible. Digestibility of grasses is slowed severely by lignification of most tissues, but these c...

متن کامل

Cell Wall Composition and Biomass Recalcitrance Differences Within a Genotypically Diverse Set of Brachypodium distachyon Inbred Lines

Brachypodium distachyon (Brachypodium) has emerged as a useful model system for studying traits unique to graminaceous species including bioenergy crop grasses owing to its amenability to laboratory experimentation and the availability of extensive genetic and germplasm resources. Considerable natural variation has been uncovered for a variety of traits including flowering time, vernalization r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Science

دوره 338 6110  شماره 

صفحات  -

تاریخ انتشار 2012